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The article considers homoepitaxy of beta gallium oxide layers doped with silicon grown by 
metal organic chemical vapor deposition (MOCVD). Epitaxial growth was carried out on 
substrates of iron doped gallium oxide. Epitaxial layers at different rates of silicon doping 
from a diluted monosilane and at different temperatures were obtained. The crystal quality 
of epitaxial layers was analyzed, as well as mobility of electrons and conductivity were 
measured. The possibility of controlling the electrical properties (such as electron mobility 
and conductivity) of homoepitaxial gallium oxide layers doped with silicon during growth 
by the MOCVD method was demonstrated.
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1. INTRODUCTION

The most stable β-phase of gallium oxide has the unique 
properties, such as a large band gap (4.9 eV [1]) and high 
values of the breakdown field (up to 8 MV/cm according 
to calculations [2], 5.3 MV/cm in the device [1]), as well as 
relatively high electron mobility (up to 196 cm2/(V·s) [3]) 
and radiation resistance [4].

These facts confirm the significance of using this ma-
terial in the production of power electronic devices and 
ultraviolet (UV) sensors. Recently, β-Ga2O3 has attracted 
significant attention for its potential use in various applica-
tions, including an UV solar radiation detector, gas sensor, 
photocatalyst and high-power electronic devices [5–9].

Another advantage of β-Ga2O3 is the ability to inten-
tionally introduce n-type dopants, using a variety of dop-
ant materials, such as Si [10], Sn [11], Ge [12]. Among 
these dopants, silicon is regarded as a mostly used one 
to improve the electrical conductivity of β-Ga2O3 layers. 
In addition, doping of gallium oxide with silicon allows 
to achieve a specific concentration of electrons, which is 

necessary for using the material in the production of elec-
tronic devices based on gallium oxide [13].

The manufacture of high-quality semiconductor de-
vices, including power electronics devices, requires epi-
taxial layers with a minimum number of defects, which 
will primarily be determined by the choice of the substrate 
material. It is possible to use different substrate materi-
als for epitaxy of various polytypes of gallium oxide. For 
example, α-Ga2O3 and κ-Ga2O3 are often grown on sap-
phire substrates [14,15] and it has been reported about 
the successful growth of α-Ga2O3 layers on a diamond 
substrate [16]. However, the most effective way to obtain 
layers with a low defect rate is to use homoepitaxy, which 
implies matching the substrate material and the epitaxial 
layer. Thus, another advantage of gallium oxide can be 
used: the possibility of producing substrates from bulk 
crystals grown by relatively cheap methods of pulling 
from the melt, for example, the Czochralski [17] and Ste-
panov [18] methods.

The process of growing a layer of β-Ga2O3 using epi-
taxy has been explored through various techniques, includ-
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ing molecular beam epitaxy (MBE) [19–21], metalorgan-
ic chemical vapor deposition (MOCVD) [22–24], halide 
vapor-phase epitaxy (HVPE) [25–28] and low-pressure 
chemical vapor deposition (LPCVD) [29–31]. Each meth-
od comes with its own unique challenges. For example, 
when using the MBE method to grow β-Ga2O3, it has 
proven difficult to precisely control the n-type doping 
level, especially at low dopant concentrations. HVPE and 
LPCVD epitaxial methods are well suited for producing 
relatively thick films for vertical power devices, but these 
methods are not ideal for growing complex heterostruc-
tures or for precisely controlling epitaxial layers in the 
nanometer range. MOCVD is the most widely used meth-
od for industrial fabrication of semiconductor devices to-
day. However, there is still a need to improve the quality 
of β-Ga2O3-based epitaxial heterostructures. A detailed 
understanding of the mechanisms that affect the charac-
teristics of β-Ga2O3/β-Ga2O3 and β-(AlxGa1–x)2O3/β-Ga2O3 
epitaxial layers and structures remains an unsolved prob-
lem [32]. Thus, based on the characteristics of the meth-
ods, the MOCVD process was chosen in our study.

2. METHODS

Bulk crystals of β-Ga2O3 were grown using the Czochrals-
ki method in the Nika-3 growth installation (FSUE EZAN, 
Russia). The melt was prepared in the iridium crucible, 
which has a height of 26 mm and a diameter of 40 mm. The 
crucible was placed in a thermal zone made of zirconium 
dioxide. Induction heating was used for melting. The raw 
material for the melt was Ga2O3 powder with a purity of 
99.999%. Iron oxide powder (Fe2O3) of 99.99% purity (LLC 
Lanhit, Russia) was added to the charge for alloying. The 
addition of iron allows for the production of semi-insulating 
substrates, which makes it possible to measure the electrical 
properties of the epitaxial layers. The mass fraction of iron 
in the charge was 0.011%. The growth was carried out at 
a temperature of about 1850 °C and a pressure of 1.4 bar 
in a mixture of gases (Ar + O2), the oxygen content in the 
growth atmosphere was about 5 vol.%. Previously grown 
gallium oxide crystals were used as seeds. The rate of pull-
ing of the crystal was 0.15 mm/min.

The classical approach in the manufacture of bulk 
crystal substrates requires cutting, as well as mechanical 
and chemical polishing followed by cleaning. The nature 
of the cleavage of β-Ga2O3 crystals makes it possible to 
use a different method of manufacturing substrates, which 
consists in delaminating the bulk crystal along the cleav-
age plane (100) [33]. Moreover, using this method of ob-
taining substrates makes it possible to obtain samples with 
a sufficiently smooth surface without the need for addi-
tional processing. In this way, the substrates were obtained 
in the form of plane-parallel plates about 10×15 mm in 
size and 0.5 mm thick.

Epitaxial growth of β-Ga2O3 layers doped with silicon 
was carried out on β-Ga2O3:Fe substrates using MOCVD 
method at the Epiquip VP-50 facility, upgraded for the 
growth of oxides. The installation has a horizontal reactor 
with induction heating. A diluted monosilane (200 ppm) 
was used for silicon doping.

The carrier gas (nitrogen) flow was 4.5 slm (liters 
per minute under standard conditions), the oxygen flow 
was 1 slm, the trimethylgallium flow was 21 micromol/
min, and the initial SiH4 flow was 6.7 nmol/min. Epi-
taxial growth of the β-Ga2O3:Si layer was conducted for 
60 minutes. The approximate growth rate was 1100 nm/h, 
which was estimated using a reflectometry system with a 
He-Ne laser. Four structures were grown at a fixed tem-
perature of 980 °C with varying concentrations of silicon 
by changing the initial flow of silane (with a decrease in 
the flow by 2 and 5 times, and a 2-fold increase in the 
flow). The other 4 structures were grown with a standard 
silane flow (6.7 nmol/min), but at different temperatures 
of 1020 °C, 1050 °C, 1060 °C, and 1100 °C, respectively.
A DRON-8 X-ray diffractometer (NPO Burevestnik, 
Russia) was used to analyze the phase composition of 
structures and their crystalline quality. Images of chip 
structures were obtained using a scanning electron micro-
scope (Tescan MIRA-3, Czech Republic). The SE detec-
tor was used, the accelerating voltage was 2 kV, with the 
working distance of 7 mm. Gold plating was not used in 
this study.

Measurements of electron mobility the con-
ductivity of structures were performed at the BIO-
RAD HL5200 Hall effect measurement system by the 
four-point probe van der Pauw method.

3. RESULTS AND DISCUSSION

The X-ray diffraction 2θ-ω scans obtained from the set of 
samples with different silane fluxes are shown in Fig 1. 
These curves confirm the presence of only the β-phase of 

Fig. 1. X-ray diffraction 2θ-ω scans of β-Ga2O3:Si samples 
grown at different silane fluxes.
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gallium oxide in all epitaxial structures, which is expected 
for the homoepitaxy process.

Based on the rocking curves for the same structures in 
Fig. 2, it can be said that the minimal silane flux (1.3 nmol/
min) provides the best crystal quality of the structure. On 
the contrary, an increase in silicon concentration leads to 
increase in the full width at half maximum (FWHM) from 
0.031 to 0.056 of a rocking curve. This is caused by an 
increase in the number of defects and a deterioration in the 
crystal quality. For example, authors of Ref. [34] reports 
that the properties of thin films of gallium oxide grown 
on (100) substrates are significantly affected by the for-
mation of planar defects, such as packaging defects and 
twins, which result from the formation of two-dimension-
al islands with two different orientations rotated 180° in 
the (100) plane.

An increase in temperature intensified the entry of sil-
icon, which worsened the quality of the layers. The X-ray 
diffraction rocking curves of the samples grown at dif-
ferent growth temperatures show no significant differenc-
es of the quality of these layers. Therefore, their graphs 
are not given in this work. The similar 2θ-ω curves of 
the samples grown at different temperatures (see Fig. 3) 
confirm the presence of only the β-phase of gallium ox-
ide in all structures. Unfortunately, two structures were 
unsuitable for further measurements (a structure with a 
silane flux of 3.3 nmol/min and a structure with a growth 
temperature of 1100 °C). Thus, in the further part of the 
study, only 6 samples will be considered (obtained un-
der different growth temperatures of 1020 °C, 1050 °C, 
1060 °C, respectively and different silane fluxes: 1.3, 6.7, 
13.3 nmol/min).

The images of the chip samples were obtained using a 
scanning electron microscope (Fig. 4) and the thickness of 
the layers of structures was determined. The thicknesses 

of the layers were in the range of 0.9–1.0 µm which are 
consistent with the results of measurements of the epitax-
ial growth rate using a reflectometry system. An increase 
in the growth temperature also had no effect on the growth 
rate, at least in this temperature range. In addition, based 
on the images of surface of the sample (see Fig. 5a), it is 
possible to see the presence of a non-planar growth type. 
In our experiments, the plane (100) should promote lay-
er-by-layer growth, but due to the lack of misorientation 
of the substrate (usually by 0.2–0.3° relative to the nor-
mal to the growth surface), the density of seed steps on 
the initial substrate is small and flat areas without steps 
predominate on the surface of the substrate, which led to 
island-like layer growth.

Fig. 5 shows the dependence of the electron mobility 
and the conductivity of three structures with different si-
lane flows. It is easy to see that an increase in the silane 
flow (and, as a consequence, an increase in the concentra-
tion of silicon in the layers) leads to a decrease in the elec-
tron mobility. This may be due to scattering by electrons 
on Si atoms (which are interstitial impurities in gallium 
oxide) and may also be due to the presence of additional 
defects in the layer, which is consistent with the data of the 
X-ray rocking curves. 

It is known that dopants and other defects such as in-
terstitials and vacancies may act as scattering centers for 
electrons which will degrade the mobility. In a recent 
study [35], it was reported that the mobility of electrons in 
homoepitaxial films of β-Ga2O3 is constrained by the high 
density of edge dislocations and crystal defects caused by 
high levels of doping. The nature of the dependencies is 
comparable with those reported in study [36] in which a 
decrease in electron mobility with the increase in Si dop-
ing concentration suggests the domination of ionized im-
purity scattering.

The dependence of conductivity (Fig. 6) on the doping 
level is approximately linear, which is associated with an 

Fig. 2. The rocking curves of the β-Ga2O3:Si samples grown at 
different silane fluxes.

Fig. 3. X-ray diffraction 2θ-ω scans of β-Ga2O3:Si samples 
grown at different growth temperatures.
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increase in the silicon concentration in the layer, and is 
consistent with the results of the work [37].

Fig. 7 shows measurements of the conductivity of three 
structures grown at different growth temperatures. We as-
sume that an increase in temperature leads to the incorpo-
ration of larger number of silicon atoms from the silane 
flux into the epitaxial layer. For example, in work [38] it is 
reported that a higher growth temperature can contribute 
to a greater probability of Si entering the epitaxial lay-
er, which further reduces the resistivity of Ga2O3. Due to 
these factors, the concentration of silicon in the layer and 
its conductivity increase. 

The dependence of electron mobility on the growth 
temperature of the epitaxial layers is shown in Fig. 8. In 
the given temperature range, a linear increase in mobility 
is observed with increasing temperature. We suppose that 
the main mechanism for limiting electron mobility is its 
scattering by charged point defects, for example, on va-
cancies [39]. In this case, as the temperature rises, the sil-
icon content in the layer increases and, as a consequence, 
the electron concentration increases. In turn, the growth 
in the electron concentration leads to the screening of 
charged point defects (scattering centers), to a decrease in 
scattering and to an increase in mobility.

Fig. 4. Images of layers on the chip of structures obtained using a scanning electron microscope: (a) sample with a silane flux of 
6.7 nmol/min, a layer of β-Ga2O3:Si is about 0.9 µm thick; (b) sample with a 3.3 nmol/min silane flux, a β-Ga2O3:Si layer is about 
1.0 µm thick. 

Fig. 5. Dependence of the electron mobility of β-Ga2O3:Si layers 
grown at fixed temperature 980 °C and different silane fluxes on 
the silane flux.

Fig. 6. Dependence of the conductivity of β-Ga2O3:Si layers 
grown at fixed temperature 980 °C and different silane fluxes on 
the silane flux.
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4. CONCLUSIONS

The paper describes the possibility of homoepitaxial 
growth of gallium beta oxide layers doped with silicon 
and a change in their electrical properties depending on 
the dopant flow and the growth temperature. An increase 
in the silane flux leads to reduction of the mobility of 
charge carriers in the layer and deterioration in crystalline 
quality with an increase of its conductivity. An increase in 
the growth temperature leads to an increase of the conduc-
tivity of structures and the mobility of charge carriers in 
them with increased crystalline quality.

Thus, the possibility of β-Ga2O3 layer growth by MOC-
VD with control of conductivity and mobility of electrons 
depending on the growth parameters (temperature and si-
lane flux) has been shown. This result will be crucial for 
creating efficient power optoelectronic components with a 
high breakdown field and minimal resistance.

A special feature of this work is the growth of gal-
lium oxide layers on the (100) plane of the substrate, 
while most papers consider other growth planes, such 
as (010) [13,23,40] and (001) plane [34]. The effect of 
doping at high growth temperatures is considered, as op-
posed to other works, where the epitaxial growth tempera-
ture on the (100) plane is fixed and is less than 980 °C, for 
example, 740 °C [40], 800–900 °C [41], 825 °C [42].

The data obtained in the work will form the basis for 
future technology for the production of device structures 
and microelectronic devices based on gallium oxide for 
promising power electronics devices, such as field-effect 
transistors and Schottky diodes.
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Легирование кремнием эпитаксиальных слоев оксида галлия 
методом осаждения металлорганических соединений из газовой 

фазы
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Аннотация. В работе рассмотрены особенности легирования кремнием эпитаксиальных слоев оксида галлия в процессе 
гомоэпитаксии. На легированных железом подложках β-Ga2O3 методом осаждения металлорганических соединений из газовой 
фазы (MOCVD) выращены слои β-Ga2O3 легированные кремнием из раствора моносилана при различных потоках силана 
и температурах роста. Проанализировано кристаллическое качество структур, получены данные подвижности носителей и 
проводимости слоев в зависимости от параметров легирования.
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